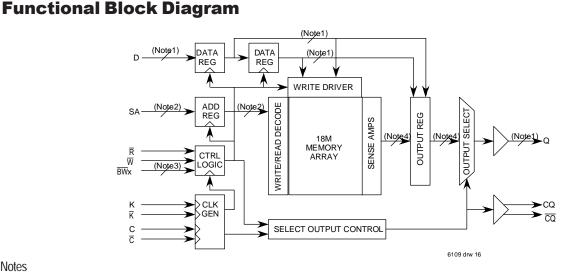


18Mb Pipelined QDR™II SRAM Burst of 2

IDT71P72804 IDT71P72604

Features


- ٠ 18Mb Density (1Mx18, 512kx36)
- Separate, Independent Read and Write Data Ports ٠ Supports concurrent transactions
- **Dual Echo Clock Output** ٠
- 2-Word Burst on all SRAM accesses ٠
- DDR (Double Data Rate) Multiplexed Address Bus ٠
- One Read and One Write request per clock cycle
- DDR (Double Data Rate) Data Buses
 - Two word burst data per clock on each port
 - Four word transfers per clock cycle (2 word bursts on 2 ports)
- Depth expansion through Control Logic ٠
- HSTL (1.5V) inputs that can be scaled to receive signals from 1.4V to 1.9V.
- Scalable output drivers
 - Can drive HSTL, 1.8V TTL or any voltage level from 1.4V to 1.9V.
 - Output Impedance adjustable from 35 ohms to 70 ohms
- **Commercial and Industrial Temperature Ranges** ٠
- ٠ 1.8V Core Voltage (VDD)
- 165-ball, 1.0mm pitch, 13mm x 15mm fBGA Package ٠
- JTAG Interface

Description

The IDT QDRII[™] Burst of two SRAMs are high-speed synchronous memories with independent, double-data-rate (DDR), read and write data ports. This scheme allows simultaneous read and write access for the maximum device throughput, with two data items passed with each read or write. Four data word transfers occur per clock cycle, providing guad-data-rate (QDR) performance. Comparing this with standard SRAM common I/O (CIO), single data rate (SDR) devices, a four to one increase in data access is achieved at equivalent clock speeds. Considering that QDRII allows clock speeds in excess of standard SRAM devices, the throughput can be increased well beyond four to one in most applications.

Using independent ports for read and write data access, simplifies system design by eliminating the need for bi-directional buses. All buses associated with the QDRII are unidirectional and can be optimized for signal integrity at very high bus speeds. The QDRII has scalable output impedance on its data output bus and echo clocks, allowing the user to tune the bus for low noise and high performance.

The QDRII has a single DDR address bus with multiplexed read and write addresses. All read addresses are received on the first half of the clock cycle and all write addresses are received on the second half of the clock cycle. The read and write enables are received on the first half of the clock cycle. The byte and nibble write signals are received on both halves of the clock cycle simultaneously with the data they are controlling on the data input bus.

Notes

- 1) Represents 18 signal lines for x18, and 36 signal lines for x36
- 2) Represents 19 address signal lines for x18, and 18 address signal lines for x36.
- 3) Represents 2 signal lines for x18, and 4r signal lines for x36.
- 4) Represents 36 signal lines for x18, and 72 signal lines for x36.

6109 tbl 06

Absolute Maximum Ratings^{(1) (2)}

Symbol	Rating	Value	Unit
VTERM	Supply Voltage on Vod with Respect to GND	-0.5 to +2.9	V
Vterm	Supply Voltage on Voda with Respect to GND	-0.5 to VDD +0.3	V
VTERM	Voltage on Input terminals with respect to GND.	-0.5 to VDD +0.3	V
VTERM	Voltage on Output and VO terminals with respect to GND.	-0.5 to VDDQ +0.3	V
Tbias	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-65 to +150	°C
ЮЛТ	Continuous Current into Outputs	<u>+</u> 20	mA
NOTES		6	109 tbl 05

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VDDQ must not exceed VDD during normal operation.

Write Descriptions^(1,2,3)

Signal	BW 0	BW1	BW2	BW 3
Write Byte 0	L	Х	Х	Х
Write Byte 1	Х	L	Х	Х
Write Byte 2	Х	Х	L	Х
Write Byte 3	Х	Х	Х	L

NOTES:

- 1) All byte write $(\overline{BW}x)$ signals are sampled on the rising edge of K and again on \overline{K} . The data that is present on the data bus in the designated byte will be latched into the input if the corresponding BWx is held low. The rising edge of K will sample the first byte of the two word burst and the rising edge of \overline{K} will sample the second byte of the two word burst.
- 2) The availability of the BWx on designated devices is de scribed in the pin description table.
- 3) The QDRII Burst of two SRAM has data forwarding. A read request that is initiated on the same cycle as a write request to the same address will produce the newly written data in response to the read request.

Capacitance (TA = +25°C, f = 1.0MHz)⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance		5	pF
Ссік	Clock Input Capacitance	$V_{DD} = 1.8V$ $V_{DDQ} = 1.5V$	6	pF
Со	Output Capacitance		7	pF

NOTE:

1. Tested at characterization and retested after any design or process change that may affect these parameters.

Recommended DC Operating and Temperature Conditions

Symbol	Parameter		Min.	Тур.	Мах.	Unit
Vdd	Power Supply Voltage		1.7	1.8	1.9	۷
Vddq	I/O Supply Voltage		1.4	1.5	Vdd	۷
Vss	Ground		0	0	0	۷
Vref	Input Reference Voltage		0.68	Vdda/2	0.95	۷
Та	Ambient	Commercial		٥c		
Temperature ⁽¹⁾	Industrial	-40 to +85			٥C	
6100 6100						

NOTE:

6109 tbl 09

^{1.} During production testing, the case temperature equals the ambient temperature.

6109 tbl 10c

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)

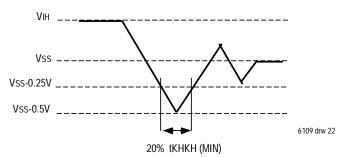
Parameter	Symbol	Test Conditions		Min	Мах		Unit	Note
Input Leakage Current	lı.	VDD = Max VIN = VSS to VDDQ	VDD = Max VIN = VSS to VDDQ		+2		μΑ	
Output Leakage Current	IOL	Output Disabled		-2	+	2	μΑ	
					Com'l	Ind		<u> </u>
Operating Current		VDD = Max,	200MHz	-	950	1000	mA	
(x36): DDR	DD	IOUT = 0mA (outputs open), Cycle Time <u>></u> tкнкн Min	167MHz	-	850	900		1
Operating Current (x18): DDR		VDD = Max, IOUT = 0mA (outputs open), Cycle Time \geq tKHKH Min	250MHz	-	850	-	mA	
	D D		200MHz	-	750	800		1,8
(167MHz	-	650	700		
		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	250MHz	-	375	-	mA	
Standby Current: NOP	ISB1		200MHz	-	335	385		2,8
			-	300	350			
Output High Voltage	VOH1	RQ = 250Ω , IOH = -15 mA	$RQ = 250\Omega$, IOH = -15mA		VDDQ/2+0.12		V	3,7
Output Low Voltage	VOL1	$RQ = 250\Omega$, IOL = 15mA		VDDQ/2-0.12	VDDQ/2+0.12		V	4,7
Output High Voltage	Voh2	IOH = -0.1mA		VDDQ-0.2	Vddq		V	5
Output Low Voltage	VOL2	IOL = 0.1mA	IOL = 0.1mA		0.2		V	6

NOTES:

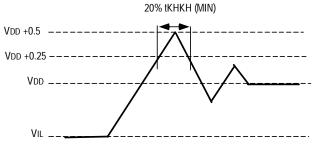
- 1. Operating Current is measured at 100% bus utilization.
- 2. Standby Current is only after all pending read and write burst operations are completed.
- 3. Outputs are impedance-controlled. IOH = -(VDDQ/2)/(RQ/5) and is guaranteed by device characterization for $175\Omega \le RQ < 350\Omega$. This parameter is tested at RQ = 250Ω , which gives a nominal 50Ω output impedance.
- 4. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) and is guaranteed by device characterization for $175\Omega \le RQ < 350\Omega$. This parameter is tested at RQ = 250Ω , which gives a nominal 50Ω output impedance.
- 5. This measurement is taken to ensure that the output has the capability of pulling to the VDDQ rail, and is not intended to be used as an impedance measurement point.
- 6. This measurement is taken to ensure that the output has the capability of pulling to Vss, and is not intended to be used as an impedance measurement point.
- 7. Programmable Impedance Mode.
- 8. Industrial temperature range is not available for the 250MHz speed grade.

Input Electrical Characteristics Over the Operating Temperature and **Supply Voltage Range**

(VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)


Parameter	Symbol	Min	Мах	Unit	Notes	
Input High Voltage, DC	V⊪ (DC)	VREF +0.1	VDDQ +0.3	V	1,2	
Input Low Voltage, DC	VIL (DC)	-0.3	Vref -0.1	V	1,3	
Input High Voltage, AC	Vih (ac)	VREF +0.2	-	V	4,5	
Input Low Voltage, AC	VIL (AC)	-	Vref -0.2	V	4,5	
NOTES: 6109 tbl 10d						

NOTES:


- 1. These are DC test criteria. DC design criteria is VREF ± 50mV. The AC VIH/VIL levels are defined separately for measuring timing param eters.
- 2. VIH (Max) DC = VDDQ+0.3, VIH (Max) AC = VDD +0.5V (pulse width $\leq 20\%$ tKHKH (min))
- 3. VIL (Min) DC = -0.3V, VIL (Min) AC = -0.5V (pulse width \leq 20% tKHKH (min))
- 4. This conditon is for AC function test only, not for AC parameter test.
- 5. To maintain a valid level, the transitioning edge of the input must: a) Sustain a constant slew rate from the current AC level through the target AC level, VIL(AC) or VIH(AC)
 - b) Reach at least the target AC level.

c) After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC)

Undershoot Timing

Overshoot Timing

6109 drw 21

6109 tbl 11

AC Electrical Characteristics

(VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V, Commercial and Industrial Temperature Ranges) (3,7)

		250MHz ^(10,11)		200MHz		167MHz			
Symbol	Parameter	Min.	Max	Min.	Max	Min.	Мах	Unit	Notes
Clock Par	ameters	•						•	
tкнкн	Clock Cycle Time (K, \overline{K} ,C, \overline{C})	4.00	6.30	5.00	7.88	6.00	8.40	ns	
tKC var	Clock Phase Jitter (K, K, C, C)	-	0.20	-	0.20	-	0.20	ns	1,5
t KHKL	Clock High Time (K, \overline{K} ,C, \overline{C})	1.60	-	2.00	-	2.40	-	ns	8
t KLKH	Clock LOW Time (K, \overline{K} ,C, \overline{C})	1.60	-	2.00	-	2.40	-	ns	8
tĸнĸĦ	Clock to \overline{clock} (K $\rightarrow \overline{K}$,C $\rightarrow \overline{C}$)	1.80	-	2.20	-	2.70	-	ns	9
t⊼HKH	$\overline{\text{Clock}}$ to clock ($\overline{\text{K}} \rightarrow \text{K}, \overline{\text{C}} \rightarrow \text{C}$)	1.80	-	2.20	-	2.70	-	ns	9
tкнсн	Clock to data clock (K \rightarrow C, $\overline{K}\rightarrow\overline{C}$)	0.00	1.80	0.00	2.30	0.00	2.80	ns	
tKC lock	DLL lock time (K, C)	1024	-	1024	-	1024	-	cycles	2
tKC reset	K static to DLL reset	30	-	30	-	30	-	ns	
Output Pa	rameters		-	-				-	
t CHQV	C,\overline{C} HIGH to output valid	-	0.45	-	0.45	-	0.50	ns	3
t CHQX	C, C HIGH to output hold	-0.45	-	-0.45	-	-0.50	-	ns	3
tCHCQV	C,\overline{C} HIGH to echo clock valid	-	0.45	-	0.45	-	0.50	ns	3
t CHCQX	C, C HIGH to echo clock hold	-0.45	-	-0.45	-	-0.50	-	ns	3
tcohov	CQ, CQ HIGH to output valid	-	0.30	-	0.35	-	0.40	ns	
tcoнox	CQ, CQ HIGH to output hold	-0.30	-	-0.35	-	-0.40	-	ns	
tchoz	C HIGH to output High-Z	-	0.45	-	0.45	-	0.50	ns	3,4,5
tCHQX1	C HIGH to output Low-Z	-0.45	-	-0.45	-	-0.50	-	ns	3,4,5
Set-Up Ti	nes	-						-	
tavkh	Address valid to K,\overline{K} rising edge	0.35	-	0.40	-	0.50	-	ns	6
tıvкн	$\overline{R}, \overline{W}$ inputs valid to K, \overline{K} rising edge	0.35	-	0.40	-	0.50	-	ns	
tdvkh	Data-in and $\overline{\text{BWx}}$ valid to K, $\overline{\text{K}}$ rising edge	0.35	-	0.40	-	0.50	-	ns	
Hold Time	25								
tkhax	K,\overline{K} rising edge to address hold	0.35	-	0.40	-	0.50	-	ns	6
tkhix	K,\overline{K} rising edge to $\overline{R},\overline{W}$ inputs hold	0.35	-	0.40	-	0.50	-	ns	
tkhdx	K, \overline{K} rising edge to data-in and \overline{BWx} hold	0.35	-	0.40	-	0.50	-	ns	

NOTES:

NOTES:
1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
2. Vdd slew rate must be less than 0.1V DC per 50 ns for DLL lock retention. DLL lock time begins once Vdd and input clock are stable.
3. If C, C are tied High, K, K become the references for C, C timing parameters.
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worse case at totally different test conditions (0°C, 1.9V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7V) It is not possible for two SRAMs on the same board to be at such different voltage and temperature.
5. This parameter is guaranteed by device characterization, but not production tested.
6. All address inputs must meet the specified setup and hold times for all latching clock edges.

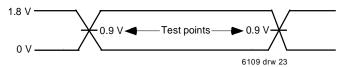
During production testing, the case temperature equals TA.
 Clock High Time (tKHKL) and Clock Low Time (tKLKH) should be within 40% to 60% of the cycle time (tKHKH).

Clock to Clock time (tKHKH) and Clock to Clock time (tKHKH) should be within 45% to 55% of the cycle time (tKHKH).
 The 250MHz speed grade is not available in the 512K x 36-bit option.
 Industrial temperature range is not available for the 250MHz speed grade.

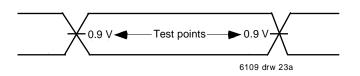
JTAG DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note		
I/O Power Supply	VDDQ	1.4	-	Vdd	V			
Power Supply Voltage	Vdd	1.7	1.8	1.9	۷			
Input High Level	Vih	1.3	-	VDD+0.3	۷			
Input Low Level	VIL	-0.3	-	0.5	V			
TCK Input Leakage Current	lı.	-5	-	+5	μA			
TMS, TDI Input Leakage Current	lı.	-15	-	+15	μA			
TDO Output Leakage Current	lol	-5	-	+5	μA			
Output High Voltage (IOH = -1mA)	Vон	VDDQ - 0.2	-	VDDQ	V	1		
Output Low Voltage (IoL = 1mA)	Vol	Vss	-	0.2	۷	1		
NOTE: 6109 tbl 19								

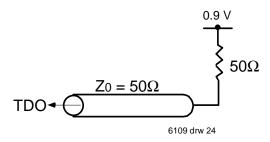
NOTE:


1. The output impedance of TDO is set to 50 ohms (nominal process) and does not vary with the external resistor connected to ZQ.

JTAG AC Test Conditions

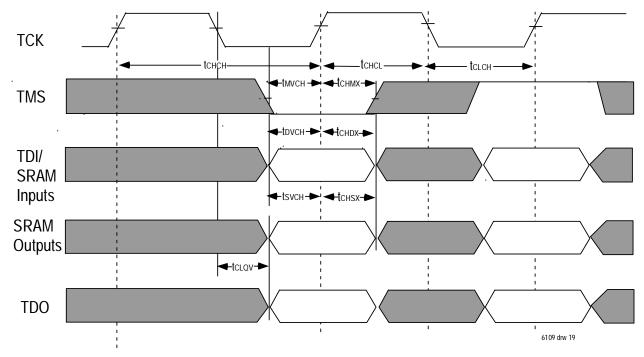

Parameter	Symbol	Value	Unit	Note		
Input High Level	Vih	1.8	V			
Input Low Level	VIL	0	V			
Input Rise/Fall Time	TR/TF	1.0/1.0	ns			
Input and Output Timing Reference Level		0.9	V	1		
NOTE: 6109 tbl 20						

1. For SRAM outputs see AC test load on page 11.


JTAG Input Test WaveForm

JTAG Output Test WaveForm

JTAG AC Test Load

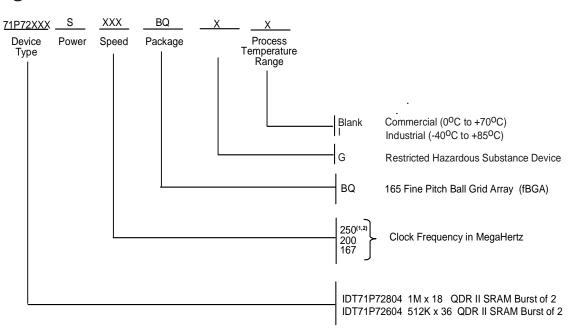


JTAG AC Characteristics

Parameter	Symbol	Min	Max	Unit	Note
TCK Cycle Time	tснсн	50	-	ns	
TCK High Pulse Width	t CHCL	20	•	ns	
TCK Low Pulse Width	t CLCH	20	-	ns	
TMS Input Setup Time	tMVCH	5	•	ns	
TMS Input Hold Time	tснмх	5	-	ns	
TDI Input Setup Time	t DVCH	5	-	ns	
TDI Input Hold Time	t CHDX	5	-	ns	
SRAM Input Setup Time	tSVCH	5	-	ns	
SRAM Input Hold Time	t CHSX	5	-	ns	
Clock Low to Output Valid	t CLQV	0	10	ns	

6109 tbl.21

JTAG Timing Diagram



Package Diagram Outline for 165-Ball Fine Pitch Grid Array

71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit) 18 Mb QDR II SRAM Burst of 2

Ordering Information

Notes:

6109 drw 15

2) Industrial temperature range is not available for the 250MHz speed grade.

1) The 250MHz speed grade is not available in the 512K x36-bit option.